姓名:冯新斌
性别:男
职称:研究员
学历:博士,博士生导师
工作单位:中国科学院地球化学研究所环境地球化学国家重点实验室
职务:中国科学院地球化学研究所所长、环境地球化学国家重点实验室主任
地址:贵州省贵阳市观山湖区林城西路99号;550081
电话: 0851-85895728 Email:fengxinbin@vip.skleg.cn
简历:
冯新斌,男,1968年2月生,中国科学院地球化学研究所所长、环境地球化学国家重点实验室主任、研究员、博士生导师,国家自然科学基金委杰出青年基金获得者、创新群体首席,国家级高层次科技创新领军人才,国家“973”项目首席。1988年毕业于中国地质大学(武汉)地球化学系地球化学与勘查专业,获工学学士学位。1988年9月至1991年7月在湖北省地质矿产局安全环保研究所从事环境监测工作。1991年8月至1997年10月在中国科学院地球化学研究所攻读硕士和博士学位,主要从事汞的环境地球化学研究,并于1994年和1997年分别获地球化学理学硕士和博士学位。1997年11月至2000年12月在瑞典哥德堡大学无机化学系从事博士后研究,主要研究方向为大气汞的环境化学。2000年12月回国工作。2001年5月至2002年4月在加拿大环境部气象中心和Ryerson大学化学生物和化工系进行合作研究;2002年12月在芬兰科学中心VTT做访问学者;2005年12月至2006年3月,在美国国家环保局(USEPA)做高级研究学者;2007年2月至2007年7月,在加拿大Trent大学化学系做高级访问学者;2009年9-11月,在挪威水环境科学研究所(NIVA)做高级访问学者,2010年10月在瑞士日内瓦大学做高级访问学者。
研究方向:
目前主要从事环境中汞、镉、铅等有害重金属元素的生物地球化学循环与人体健康、重金属污染环境修复和非传统元素稳定同位素地球化学的研究。
承担科研项目情况(在研):
1.贵州省十层次创新人才培养计划(批准号:黔科合人才(2016)4001号,负责人,2017.01-2021.12,经费:300万)
2.汞在地表环境重要形态转化及生物积累过程汞同位素分馏特征(中国科学院前沿科学重点研究项目,批准号:QYZDJ-SSW-DQC005,负责人,2016.08-2020.12,经费:300万)
3.大气汞沉降与森林生态系统地气间汞交换通量的联系:瑞士与中国对比研究(国家自然科学基金重点双边合作交流项目,批准号:21661132002,负责人,2017.01-2020.12,经费:300万)
4.喀斯特地区重金属污染过程与防控机制(国家自然科学基金委-贵州省人民政府喀斯特中心项目,批准号:U1612442,参与,2017.01-2021.12,经费:447万)
5.汞的生物地球化学循环团队(中国科学院人事局,王宽诚率先人才计划,卢嘉锡国际团队,批准号:负责人,2018.01-2020.12,经费:300万)
6.污染物跨境传输过程与环境影响对策(中国科学院专项A泛第三极环境变化与绿色丝绸之路建设子课题,XDA20040502, 负责人,2018.01-2022.12,经费:1620万)
7.生物地球化学(国家自然科学基金委员会创新群体项目,批准号:41921004,负责人,2020.01-2024.12,经费:1050万)
8.稻田生态系统汞的形态转化及同位素分馏(国家自然科学基金委员会重点基金项目,批准号:41931297,2020.01-2024.12,经费:298万)
社会任职:
主要社会兼职为中国矿物岩石地球化学学会秘书长和环境地球化学专业委员会主任委员;中国地理学会环境地理和化学地理专业委员会委员;中国化学会理事和环境化学专业委员会委员;中国环境学会理事和环境化学分会委员;中国毒理学会分析毒理专业委员会委员;第四纪学会地表过程专业委员会委员;中国分析测试学会原子光谱及相关技术专业委员会委员;中国环境学会重金属污染防治专业委员会副主任委员;中国土壤学会环境土壤专业委员会委员;国际SCI学术期刊“Journal of Geochemical Exploration”、“Science of the Total Environment”副主编; SCI刊物“Journal of Environmental Science”、“Atmosphere”编委;国际期刊“Journal of Trace Element Analysis”编委;国内核心刊物“地球与环境”、“生态毒理学报”、“Acta Geochimica”副主编;国内核心刊物“环境化学”、 “环境科学与技术”等刊物的编委。第七届、八届、十届、十一届、十二届汞全球污染物国际学术会议科学筹备委员会委员;第九届汞全球污染物国际学术会议大会主席;第7-13届“微量元素生物地球化学国际学会会议”国际委员会委员;第十五、十六、十七、十八届届环境中重金属国际学术会议国际委员会委员,第十七届环境中重金属国际学术会议大会主席;亚太地区环境地球化学与健康执行委员会委员;国际医学地质学会理事和中国-爱尔兰分会主席。已在相关领域的国内外期刊上发表学术论文500余篇,其中SCI收录文章300余篇,专著2部。
获奖及荣誉:
1997年获中国科学院院长奖学金优秀奖;1998年获中国环境科学学会首届“青年科技奖”;2000年获中国矿物岩石地球化学学会第八届“侯德封奖”;2003年获贵州省青年科技奖;2004年度、2006年度、2007年度获中国科学院“优秀研究生导师奖”;2006年获贵州省“直机关十大杰出青年称号”;2006年获国务院政府特殊津贴;2008年分别获“中科院王宽诚西部学者突出贡献奖”和中国科学院“朱李月华”优秀研究生导师奖;2009年分别荣获贵州省“五一劳动奖章”和贵州省“优秀科技工作者”称号;2010年分别荣获贵州省“先进工作者”称号、中国科学院“优秀研究生指导教师”奖和中国科学院“优秀研究生导师”奖; 2011年分别荣获中国科学院“青年国际合作奖”和“贵州省核心专家”称号;2012年分别获得中国科学院“优秀研究生指导教师”奖、中国科学院“优秀研究生导师”奖和“全国优秀科技工作者”称号;2013年分别获得中国科学院“优秀研究生指导教师”奖和中国科学院“优秀研究生导师”奖;2015年获中国科学院“优秀研究生导师”奖;2016年获中国科学院“优秀研究生指导教师奖”,2018年获“中国科学院优秀导师奖”。2004年获贵州省科技进步一等奖(排名第6),2016年、2021年获贵州省科技进步奖一等奖(排名第1)。
代表论著:
1、近5年已收录的SCI论文
[1] Teng D.Y., Mao K*., Ali W., Xu G.M., Huang G.P., Niazi N.K., Feng X.B., Zhang H*., Describing the toxicity and sources and the remediation technologies for mercury-contaminated soil. RSC Advances, 2020, 10(39): 23221-23232. DOI: 10.1039/d0ra01507e
[2] Ali W., Mao K., Zhang H*., Junaid M., Xu N., Rasool A., Feng X.B., Yang Z., Comprehensive review of the basic chemical behaviours, sources, processes, and endpoints of trace element contamination in paddy soil-rice systems in rice-growing countries. Journal of Hazardous Materials. 2020, 397, 122720, https://doi.org/10.1016/j.jhazmat.2020.122720.
[3] Mao K., Zhang K.K., Du W., Ali W., Feng X.B., Zhang H*., The potential of wastewater-based epidemiology as surveillance and early warning of infectious disease outbreaks. Current Opinion in Environmental Science and Health, 2020, 17:1-7. https://doi.org/10.1016/j.coesh.2020.04.006
[4] Wang Q.F*., Li Z.G., Feng X.B., Li X.Y., Wang D., Sun G.Y., Peng H.H., Vegetable Houttuynia cordata Thunb. as an important human mercury exposure route in Kaiyang county, Guizhou province, SW China. Ecotoxicology and Environmental Safety, 2020, 197, 110575, https://doi.org/10.1016/j.ecoenv.2020.110575
[5] Chang C.Y., Chen C.Y., Rin R.S*., Shen Y., Mao K., Yang Z.G., Feng X.B*., Zhang H*. Bioaccumulation of Hg in rice leaf facilitates selenium bioaccumulation in rice (Oryza sativa L.) leaf in the Wanshan mercury mine. Environmental Science and Technology, 2020, 54, 3228?3236, https://dx.doi.org/10.1021/acs.est.9b06486
[6] Zhao L., Meng B*., Feng X.B*., Mercury methylation in rice paddy and accumulation in rice plant: a review. Ecotoxicology and Environmental Safety, 2020, 195, 110462, https://doi.org/10.1016/j.ecoenv.2020.110462
[7] Sun R.Y., Sun G.Y., Kwon S.Y., Feng X.B., Kang S.C., Zhang Q.G., Huang J*., Yin R.S.* Mercury biogeochemistry over the Tibetan Plateau: An overview. Critical Reviews in Environmental Science and Technology, 2020, doi.org/10.1080/10643389.2020.1733894
[8] Yao H., Zhao Y.J., Lin C-J*., Yi F.J., Liang X.F., Feng X.B.* Development of a novel composite resin for dissolved divalent mercury measurement using diffusive gradients in thin films. Chemosphere, 2020, 251, 126231, https://doi.org/10.1016/j.chemosphere.2020.126231
[9] Xing Y., Wang J.X*., Shaheen S.M., Feng X.B., Chen Z., Zhang H*., Rinklebe J., Mitigation of mercury accumulation in rice using rice hull-derived biochar as soil amendment: A field investigation. Journal of Hazardous Materials, 2020, 388, 121747, doi.org/10.1016/j.jhazmat.2019.121747
[10] Wang J.X*., Shaheen S.M., Anderson, C., Xing, Y., Liu, S.R., Xia, J.C., Feng, X.B*., Rinklebe, J. Nano-activated carbon reduces mercury mobility and uptake by oryza sativa l: mechanistic investigation using spectroscopic and microscopic techniques. Environmental Science and Technology, 2020, 54, 2698?2706, .doi.org/10.1021/acs.est.9b05685
[11] Sun G.Y., Feng X.B*., Yang C.M., Zhang L.M., Yin R.S., Li Z*., Bi X.Y., Wu Y.J., Levels, sources, isotope signatures, and health risks of mercury in street dust across China. Journal of Hazardous Materials, 2020, 10.1016/j.jhazmat.2020.122276
[12] Wang X., Luo J., Yuan W., Lin C-J., Wang F.Y., Liu C., Wang G.X., Feng X*. Global warming accelerates uptake of atmospheric mercury in glacier retreated regions. Proceedings of National Academy of Sciences of USA, 2020, 117 (4): 2049-2055, doi:10.1073/pnas.1906930117
[13] Hu H.Y.*, Wang B., Bravo A.G., Bj?rn E., Skyllberg U., Amouroux D., Tessier E., Zopfi J., Feng X.B., Bishop K., Nilsson M.B., Bertilsson S., Shifts in mercury methylation across a peatland chronosequence: from sulfate reduction to methanogenesis and syntrophy. Journal of Hazardous Materials, 2020, 387: 121967. DOI:10.1016/j.jhazmat.2019.121967
[14] Fu X.W.*, Zhang H., Liu C., Zhang H., Lin C-J., Feng X.B.*, Significant Seasonal Variations in Isotopic Composition of Atmospheric Total Gaseous Mercury at Forest Sites in China Caused by Vegetation and Mercury Sources. Environmental Science and technology, 2019, 53(23): 13748-13756. DOI: 10.1021/acs.est.9b05016
[15] Yuan W., Wang X., Lin C-J., Sommar J., Lu Z.Y., Feng X.B*. Process factors driving dynamic exchange of elemental mercury vapor over soil in broadleaf forest ecosystems. Atmospheric Environment, 2019, 219, 117047, DOI: 10.1016/j.atmosenv.2019.117047
[16] Xu Q.Q., Zhao L., Wang Y.M., Xie Q., Yin D.L., Feng X.B., Wang D.Y*. Bioaccumulation characteristics of mercury in fish in the three Gorges Reservoir, China. Environmental Pollution, 2019, 243:115-126. DOI: 10.1016/j.envpol.2018.08.048
[17] Xu Z.Z, Fan H.W*., Shi Z.W., Tan C., Cui M.M., Tang S.C., Qiu G.L., Feng X.B*., Mercury and methylmercury bioaccumulation in a contaminated bay. Marine Pollution Bulletin, 2019, 143:134-139, DOI: 10.1016/j.marpolbul.2019.04.032
[18] Wang J.X., Shaheen S.M., Swertz A-C., Rennert T., Feng X.B., Rinklebe J*.,Sulfur-modified organoclay promotes plant uptake and affects geochemical fractionation of mercury in a polluted floodplain soil. Journal of Hazardous Materials, 2019, 371:687-693. DOI:10.1016/j.jhazmat.2019.03.010
[19] Tang S.L*., Zhou Y., Yao X., Feng X.B*., Li Z., Wu G., Zhu G.Y., The mercury isotope signatures of coalbed gas and oil-type gas: Implications for the origins of the gases. Applied Geochemistry, 2019, 104415, DOI:10.1016/j.apgeochem.2019.104415.
[20] Li K., Lin C-J., Yuan W., Sun G.Y., Fu X.W*., Feng X,B.*, An improved method for recovering and preconcentrating mercury in natural water samples for stable isotope analysis. Journal of Analytical Atomic Spectrometry, 2019, 34(11), 2303-2313, DOI:10.1039/c9ja00174c.
[21] Li X.Y., Bi X.Y., Li Z.G.*, Zhang L.M., Li S., Chen J., Feng X.B*., Fu X.W. Atmospheric Lead Emissions from Coal-Fired Power Plants with Different Boilers and APCDs in Guizhou, Southwest China. Energy and Fuels, 2019, 33, 11, 10561-10569. DOI:10.1021/acs.energyfuels.9b02188.
[22] Wang X., Yuan W., Lin C-J., Zhang L.M., Zhang H., Feng X.B*., Climate and vegetation as primary drivers for global mercury storage in surface soil. Environmental Science and Technology, 2019, 53(18):10665-10675, DOI:10.1021/acs.est.9b02386
[23] Sun R.G., Mo Y.F., Feng X.B.*, Zhang L.M., Jin L., Li Q.H., Effects of typical algae species (Aphanizomenon flosaquae and Microcystis aeruginosa) on photoreduction of Hg2+ in water body. Journal of Environmental Science, 2019, 85: 9-16, DOI: 10.1016/j.jes.2019.02.012
[24] Wang J.X., Sun X.C., Xing Y., Xia J.C., Feng X.B.* In-situ immobilization of mercury and arsenic-enriched mine tailing from a typical Carlin-type gold mining site in southwestern part of China. Journal of Cleaner Production, 2019, 240, 118171, DOI:10.1016/j.jclepro.2019.118171
[25] Liu K.Y., Wu Q., Wang L., Wang S.X.*, Liu T., Ding D., Tang Y., Li G., Tian H., Duan L., Wang X., Fu X.W., Feng X.B., Hao J.M., Measure-Specific Effectiveness of Air Pollution Control on China’s Atmospheric Mercury Concentration and Deposition during 2013-2017. Environmental Science and Technology, 2019, 53( 15): 8938-8946. DOI: 10.1021/acs.est.9b02428
[26] Cui Z.K., Li Z.G.*, Zhang Y.Z., Wang X.F., Li Q.L., Zhang L.M., Feng X.B*., Li X.Y., Shang L.H., Yao Z.X., Atmospheric Mercury Emissions from Residential Coal Combustion in Guizhou Province, Southwest China. Energy and Fuels, 2019, 33(3):1937-1943.
[27] Li Z.G*., Chen X.F., Liu W.L., Li T.S., Chen J., Lin C-J., Sun G.Y., Feng X.B.* Evolution of four-decade atmospheric mercury release from a coal-fired power plant in North China. Atmospheric Environment, 2019, 213:526-533. DOI:10.1016/j.atmosenv.2019.06.045
[28] Wang F.Y*., Outridge P.M., Feng X.B., Meng B., Heimbürger-Boavida L.E., Mason R.P. How closely do mercury trends in fish and other aquatic wildlife track those in the atmosphere? – Implications for evaluating the effectiveness of the Minamata Convention. Science of the Total Environment, 2019, 674:58-70. DOI: 10.1016/j.scitotenv.2019.04.101
[29] Tang W.L., Hintelmann H., Gu B.H., Feng X.B., Liu Y.R., Gao Y.X., Zhao J.T., Zhu H.K., Lei P., Zhong H*., Increased Methylmercury Accumulation in Rice after Straw Amendment. Environmental Science and Technology, 2019, 53(11):6144-6153. DOI: 10.1021/acs.est.8b07145
[30] Li Z.G*., Li X.Y., Liu J., Zjang L., Chen J., Feng X.B*., Stone coal as a potential atmospheric mercury source in Da-Ba-Shan mountain areas, China. International Journal of Coal Geology, 2019, 124(4):959-972. DOI: 10.1016/j.coal.2019.03.007
[31] Shaheen S.M., Wang J.X., Swertz A., Feng X.B., Bolan N., Rinklebe J*., Enhancing phytoextraction of potentially toxic elements in a polluted floodplain soil using sulfur-impregnated organoclay. Environmental Pollution, 2019, 248:1059-1066. DOI: 10.1016/j.envpol.2019.02.073
[32] Xu X.H., Yan M., Liang L.C., Lu Q.H., Han J.L., Liu L., Feng X.B., Guo J.Y., Wang Y.J., Qiu G.L*., Impacts of selenium supplementation on soil mercury speciation, and inorganic mercury and methylmercury uptake in rice (Oryza sativa L.). Environmental Pollution, 2019, 249:647-654. DOI: 10.1016/j.envpol.2019.03.095
[33] Liu J.L., Wang J.X*., Ning Y.Q., Yang S.C., Wang P.C., Shaheen S.M., Feng X.B., Rinklebe J., Methylmercury production in a paddy soil and its uptake by rice plants as affected by different geochemical mercury pools. Environment International, 2019, 129:461-468. DOI: 10.1016/j.envint.2019.04.068
[34] Li X.Y., Li Z.G*., Fu C.C., Tang L., Chen J., Wu T.T., Lin C-J., Feng X.B.*, Fu X.W., Fate of mercury in two CFB utility boilers with different fueled coals and air pollution control devices. Fuel, 2019, 251:651-659. DOI: 10.1016/j.fuel.2019.04.071
[35] Zhang H., Nizzetto L*., Feng X*., Borga K., Sommar J., Fu X.W.*, Zhang H., Zhang G., Larssen T., Assessing the air-surface exchange and fate of mercury in a subtropical forest using a novel passive exchange-meter device. Environmental Science and Technology, 2019, 53(9):4869-4879. DOI: 10.1021/acs.est.8b06343
[36] Fu X.W*., Zhang H., Feng X.B*., Tang Q.Y., Ming L., Liu C., Zhang L.M., Domestic and transboundary sources of atmospheric particulate mercury in remote areas of China: evidence from mercury isotopes. Environmental Science and Technology, 2019, 53( 4), 1947-1957. DOI: 10.1021/acs.est.8b06736.
[37] Sun G.Y., Feng X.B*., Yin R.S., Zhao H.F., Zhang L.M., Sommar J., Li Z.G., Zhang H.*, Corn (Zea mays L.): A low methylmercury staple cereal source and an important biospheric sink of atmospheric mercury, and health risk assessment. Environment International, 2019, 131,104971. DOI: 10.1016/j.envint.2019.104971
[38] Xu X.H., Yan M., Liang L., Lu Q., Han J., Liu L., Feng X.B., Guo J., Wang Y., Qiu G*., Impacts of selenium supplementation on soil mercury speciation, and inorganic mercury and methylmercury uptake in rice (Oryza sativa L.). Environmental Pollution, 2019, 249:647-654. DOI: 10.1016/j.envpol.2019.03.095
[39] Zhao H.F., Yan H., Zhang L.M., Sun G.Y., Li P*, Feng X.B*., Mercury contents in rice and potential risks across China. Environmental International, 2019, 126,406-412. DOI: 10.1016/j.envint.2019.02.055
[40] Liu T., Wang J.X.*, Feng X.B*., Zhang H., Zhu D.Q., Cheng S.G., Spectral Insight into Thiosulfate-induced Mercury Speciation Transformation in a Historically Polluted Soil. Science of the Total Environment, 2019, 657, 938-944,DOI: 10.1016/j.scitotenv.2018.12.010
[41] Liu C., Fu X.W.*, Zhang H., Ming L., Xu H., Zhang L.M., Feng X.B., Sources and outflows of atmospheric mercury at Mt. Changbai, northeastern China. Science of the Total Environment, 2019, 663,274-284. DOI:10.1016/j.scitotenv.2019.01.332
[42] Yuan W., Sommar J.,* Lin C-J., Wang X., Li K., Liu Y., Zhang H., Lu Z.Y., Wu C.S., Feng X.B*., Stable Isotope Evidence Shows Re-emission of Elemental Mercury Vapor Occurring After Reductive Loss from Foliage. Environmental Science and Technology, 2019, 53, 651?660,DOI: 10.1021/acs.est.8b04865
[43] Wang C., Song Z.C., Li Z.G., Zhu W., Li P.*, Feng X.B., Mercury speciation and mobility in salt slurry and soils from an abandoned chlor-alkali plant, Southwest China. Science of the Total Environment, 2019, 652:900-906, DOI: 10.1016/j.scitotenv.2018.10.296
[44] Li X.Y., Li Z*., Wu T., Chen J., Fu C., Zhang L.M., Feng X.B*., Fu X.W., Tang L., Wang Z., Wang Z., Atmospheric mercury emissions from two pre-calciner cement plants in Southwest China. Atmospheric Environment, 2019, 199:177-188. doi.org/10.1016/j.atmosenv.2018.11.011
[45] Xu XH., Gu CH., Feng X.B., Qiu G.L., Shang LH*., Xu ZD., Lu Q.H., Xiao D.A., Wang H., Lin Y*., Larrsen T., Weir building: a potential cost-effective method for reducing mercury leaching from abandoned mining tailings. Science of the total Environment, 2019, 651:171-178. DOI: 10.1016/j.scitotenv.2018.09.150
[46] Wang J.X., Xing Y., Xie Y.Y., Meng Y., Jia J.C., Feng X.B.*, The use of calcite-enriched clay mineral and diammonium phosphate as novel immobilization agents for mercury remediation: spectral investigations and field applications. Science of the Total Environment, 2019, 646:1615-1623, DOI: 10.1016/j.scitotenv.2018.07.225
[47] Zhu W., Li Z.G., Li P., Yu B., Lin C-J., Sommar J., Feng X.B.* Re-emission of legacy mercury from soil adjacent to closed point sources of Hg emission. Environmental Pollution, 2018, 242: 718-727, DOI: 10.1016/j.envpol.2018.07.002
[48] Wang J.X., Anderson C.W.N., Xing Y., Fan Y., Xia J., Shaheen S.M., Rinklebe J., Feng X.B*., Thiosulphate-induced phytoextraction of Hg in Brassica juncea: Integrated spectroscopic investigations of Hg translocation mechanism. Environmental Pollution, 2018, 242: 986-993 , 10.1016/j.envpol.2018.07.065
[49] Yin R., Guo Z., Hu L., Liu W., Hurley J. P., Lepak R. F., Lin T., Feng X. B., Li X.D*., Mercury Inputs to Chinese Marginal Seas - Impact of Industrialization and Development of China. Journal of Geophysical Research - Oceans, 2018, 123(8), 5599-5611. DOI: 10.1029/2017JC013691
[50] Li X.Y., Li Z.,* Lin C-J., Bi X.Y., Liu J.L., Feng X.B*., Zhang H., Chen J., Wu T., Health risks of heavy metal exposure through vegetable consumption near a large-scale Pb/Zn smelter in central China. Ecotoxicology and Environmental Safety, 2018, 161:33-110. DOI: 10.1016/j.ecoenv.2018.05.080
[51] Wang X., Lin C-J*., Feng X.B*., Yang W., Fu X.W., Zhang H., Wu Q., Wang S., Assessment of regional mercury deposition and emission outflow in China Mainland. Journal of Geophysical Research- Atmospheres, 2018, 123(17): 9868-9890, DOI: 10.1029/2018JD028350
[52] Lian M., Shang L., Duan Z., Li Y., Zhao G., Zhu S., Qiu G., Meng B., Sommar J., Feng X.B*., Svanberg S*., Lidar mapping of atmospheric atomic mercury in the Wanshan area, China. Environmental Pollution, 2018,240: 353-358 , doi.org/10.1016/j.envpol.2018.04.104
[53] Li P., Du B., Chan H.M., Feng X.B*., Li B.X*., Mercury bioaccumulation and its toxic effects in rats fed with methylmercury polluted rice. Science of the total Environment, 2018, 633:93-99. DOI: 10.1016/j.scitotenv.2018.03.185
[54] Fu X.W*., Yang X., Tang Q., Ming L., Lin T., Lin C-J., Li X.D., Feng X.B*., Isotopic Composition of Gaseous Elemental Mercury in the Marine Boundary Layer of East China Sea. Journal of Geophysical Research- Atmospheres, 2018, 123(14): 7656-7669, DOI:10.1029/2018JD028671
[55] Wang JX., Ying Y., Li P., Xia J., Liu T., Feng X.B.*, Chemically-assisted phytoextraction from Metal(loid)s-polluted Soils at A Typical Carlin-type Gold Mining Area in Southwest China. Journal of Cleaner Production, 2018, 189: 612-619, DOI:10.1016/j.jclepro.2018.04.082
[56] Wu Z., Feng X.B.*, Li P., Lin C-J, Qiu G., Wang X., Zhao H., Dong H., Comparison of in vitro digestion methods for determining bioaccessibility of Hg in rice of China. Journal of Environmental Sciences, 2018, 68: 185-193, DOI:10.1016/j.jes.2017.10.008
[57] Du B., Feng X.B*., Li P*., Yin R., Yu B., Sonke J.E., Guinot B., Anderson C.W.N., Maurice L. Use of Mercury Isotopes to Quantify Mercury Expousre Sources in Inland Populations, China. Environmental Science and Technology, 2018, 52, 5407-5417, DOI: 10.1021/acs.est.7b05638
[58] Manceau A*., Wang J.X., Rovezzi M., Glatzel P., Feng X.B*., Biogenesis of Mercury-Sulfur Nanoparticles in Plant Leaves from Atmospheric Gaseous Mercury. Environmental Science and Technology, 2018,52(7): 3935-3948. DOI: 10.1021/acs.est.7b05452
[59] Vishnivetskaya T. A.#, Hu H.#, Van Nostrand J. D., Wymore A. M., Xu X., Qiu G., Feng X.B., Zhou J., Brown S. D., Brandt C. C., Podar M., Gu B.,* Elias D. A.* Microbial Community Structure with Trends in Methylation Gene Diversity and Abundance in Mercury-Contaminated Rice Paddy Soils in Guizhou, China. Environmental Science: Processes & Impacts, 2018, : 20( 4): 673-685
[60] Meng B*., Li Y.B., Cui W.B., Jiang P., Liu, G.L., Wang Y.M., Richards J., Feng X.B., Cai Y. Tracing the uptake, transport, and fate of mercury in sawgrass (Cladium jamaicense) in the Florida Everglades using multi-isotope technique. Environmental Science and Technology, 2018, 52, 3384?3391, DOI: 10.1021/acs.est.7b04150
[61] Xu C.X., Yin R.S., Peng J.T*., Hurley, J.P., Lepak, R.F., Gao, J.F., Feng X.B., Hu R.Z., Bi X.W., Mercury isotope constraints on the source for sediment-hosted lead-zinc deposits in the Changdu area, southwestern China. Mineralium Deposita, 2018, 53(3): 339-352. DOI: 10.1007/s00126-017-0743-7
[62] Hsu-Kim H*., Eckley C.S., Acha D., Feng X., Gilmour C.C., Jonsson S., Mitchell C. P. J. Challenges and opportunities for managing aquatic mercury pollution in altered landscapes. Ambio, 2018, 47: 141-169. DOI 10.1007/s13280-017-1006-7
[63] Zhong SQ., Qiu G., Feng X*., Lin C. Sulfur and iron control on the accumulation of methylmercury and mercury in rice. Journal of Soil and Sediment, 2018, 18(2), 578-585, DOI: 10.1007/s11368-017-1786-1
[64] Xu X., Lin Y., Meng B., Feng X.B., Xu Z.D., Jiang Y.P., Zhong W., Hu Y., Qiu G.L*. The impact of an abandoned mercury mine on the environment in the Xiushan region, Chongqing, southwestern China. Applied Geochemistry, 2018, 88:267-275. DOI: 10.1016/j.apgeochem.2017.04.005
[65] Xu Q#., Zhao L#., Wang Y., Xie Q., Yin D., Feng X.B., Wang D.Y.*, Bioaccumulation characteristics of mercury in fish in the Three Gorges Reservoir, China. Environmental Pollution, 2018, 243:115-126.DOI:10.1016/j.envpol.2018.08.048
[66] Song Z., Li P*., Ding L., Li Z.G., Zhu W., He T.R., Feng X.B., Environmental mercury pollution by an abandoned chlor-alkali plant in Southwest China. Journal of Geochemical Exploration, 2018, 194:81-87. DOI:10.1016/j.gexplo.2018.07.017
[67] Qin C.Y., Chen M., Yan H., Shang L., Yao H., Li P*., Feng X.B.* Compound specific stable isotope determination of methylmercury in contaminated soil. Science of the Total Environment, 2018, 644: 406–412. doi:10.1016/j.scitotenv.2018.06.328
[68] Tang Y., Bi X*., Yin R., Feng X., Hu R. Concentrations and isotopic variability of mercury in sulfide minerals from the Jinding Zn-Pb deposit, Southwest China. Ore Deposit Reviews. 2017, 90:958–969
[69] Abeysinghe K. S. Yang X-D., Goodale E., Anderson C. W. N., Bishop K., Cao A., Feng X., Liu S., Mammides C., Meng B., Quan R-C., Sun J., Qiu G.*, Total and methyl mercury concentrations over a gradient of contamination in earthworms living in rice paddy soil. Environmental Toxicology and Chemistry, 2017, 36(5): 1202-1210. DOI:10.1002/etc.3643
[70] Abeysinghe K. S., Qiu G.*, Goodale E., Anderson C. W. N., Bishop K., Du B., Evers D. C., Goodale M. W., Hintelmann H., Li P., Liu S., Mammides C., Quan R-C., Wang J., Wu P., Xu X-H., Yang X-D., Xiong M., Feng X. Extreme mercury bioaccumulation in an Asian rice-based food web. Environmental Pollution, 2017, 229:219-228. DOI:10.1016/j.envpol.2017.05.067
[71] De Simone F*., Artaxo P. , Bencardino M., Cinnirella C., Carbone F., D’Amore F., Dommergue A., Feng X.B., Gencarelli C.N., Hedgecock I. M., Landis M.S., Sprovieri F., Suzuki S., W?ngberg I., Pirrone N. Particulate-phase mercury emissions from biomass burning and impact on resulting deposition: a modelling assessment. Atmospheric Chemistry and Physics, 2017, 17, 1881–1899. doi:10.5194/acp-17-1881-2017
[72] Falandysz J*., Sapkota A., Dryzalowska A., Medyk M., Feng, X., Analysis of some metallic elements and metalloids composition and relationships in parasol mushroom Macrolepiota procera. Environmental Science and Pollution Research, 2017,24: 15528-15537. DOI:10.1007/s11356-017-9136-9
[73] Falandysz J*., Sapkota A., Medyk M., Feng, XB. Rare earth elements in parasol mushroom Macrolepiota procera. Food Chemistry, 2017, 221:24-28. doi: 10.1016/j.foodchem.2016.10.047
[74] Li P., Du B.Y., Maurice L., Laffont L., Lagane C., Point D., Sonke J.E., Yin R.S., Lin C-J., Feng X.B.* Mercury Isotope Signatures of Methylmercury in Rice Samples from the Wanshan Mercury Mining Area, China: Environmental Implications. Environmental Science and Technology, 2017, 51( 21): 12321-12328. DOI: 10.1021/acs.est.7b03510
[75] Liang P., Feng X.B*., You Q., Gao X., Xu J., Wong M-H., Wu S*., The effects of aquaculture on mercury distribution, changing speciation and bioaccumulation in a reservoir ecosystem. Environmental Science and Pollution Research, 2017, 24:25923–25932.DOI: 10.1007/s11356-017-0189-6
[76] Sprovieri F*., Pirrone N. , Bencardino ., D’Amore F., Angot H., Barbante C., Brunke E-G., Arcega-Cabrera F., Cairns W., Comero S., Diéguez M., Dommergue A., Ebinghaus R., Feng X. B., Fu X., Garcia P. E., Gawlik B. M., Hagestr?m U., Hansson K., Horvat M., Kotnik J., Labuschagne C., Magand O., Martin L., Mashyanov N., Mkololo T., Munthe J., Obolkin V., Islas M. R., Sena F., Somerset V., Spandow P., Vardè M., Walters C., W?ngberg I., Weigelt A., Yang X., Zhang H. Five-year records of Total Mercury Deposition flux at GMOS sites in the Northern and Southern Hemispheres. Atmospheric Chemistry and Physics, 2017, 17, 2689-2708. doi:10.5194/acp-17-2689-201.
[77] Sun G., Li Z.*, Liu T., Chen J., Wu T., Feng X., Rare earth elements in street dust and associated health risk in a municipal industrial base of central China. Environmental Geochemistry and Health, 2017, 39(6): 1469-1486. DOI:10.1007/s10653-017-9982-x
[78] Sun, G., Li, Z*., Liu, T., Chen J., Wu T., Feng X*., Metal Exposure and Associated Health Risk to Human Beings by Street Dust in a Heavily Industrialized City of Hunan Province, Central China. International Journal of Environmental Research and Public Health, 2017, 14(3),261, DOI:10.3390/ijerph14030
[79] Tang S. L*., Feng C., Feng X.B., Zhu J.M., Sun R.Y., Fan H.P., Wang L., Li R., Mao T.H., Zhou T., Stable isotope composition of mercury forms in flue gases from a typical coal-fired power plant, Inner Mongolia, northern China. Journal of Hazardous Materials, 2017, 328:90-97. DOI:10.1016/j.jhazmat.2017.01.014
[80] Travnikov O*., Angot H., Artaxo P., Bencardino M., Bieser J., D’Amore F., Dastoor A., De Simone F., Diéguez M. del ., Dommergue A., Ebinghaus R., Feng X. B., Gencarelli C. N., Hedgecock I. M., Magand O., Martin L., Matthias V., Mashyanov N., Pirrone N., Ramachandran R., Read K. A., Ryjkov A., Selin N. E., Sena F., Song S., Sprovieri F., Wip D., W?ngberg I., Yang X. Multi-model study of mercury dispersion in the atmosphere: Atmospheric processes and model evaluation. Atmospheric Chemistry and Physics, 2017, 17(8):5271-529. DOI:10.5194/acp-17-5271-2017
[81] Wang JX., Xia JC., Feng XB*. Screening of Chelating Ligands to Enhance Mercury Accumulation from Historically Mercury-Contaminated Soils for Phytoextraction. Journal of Environmental Management, 2017, 186(2): 233-239, http://dx.doi.org/10.1016/j.jenvman.2016.05.031
[82] Wang X., Lou J., Yin R., Yuan W., Sommar J., Lin C-J., Feng X.B*., Wang H., Zhu Z., Lin C., Using Mercury Isotopes to Understand Mercury Accumulation in the Montane Forest Floor of the Eastern Tibetan Plateau. Environmental Science and Technology, 2017, 51:801-809. DOI: 10.1021/acs.est.6b03806
[83] Wang X., Yuan W., Feng X*., Global Review of Mercury Biogeochemical Processes in Forest Ecosystems. Progress in Chemistry, 2017, 29(9): 970-980. DOI:10.7536/PC170343
[84] Wu T., Bi X., Li Z*., Sun G., Feng X.B., Shang L., Zhang H., He T., Chen J. Contaminations, sources and health risks of trace metal(loid)s in street dust of a small city impacted by artisanal Zn smelting activities. International Journal of Environmental Research and Public Health, 2017, 14(9), 961, DOI:10.3390/ijerph14090961
[85] Xu X. H., Meng B., Zhang C., Feng X.B., Gu C.H., Guo J.Y., Bishop K., Xu Z.D., Zhang S.S., Qiu G.L*., The local impact of a coal-fired power plant on inorganic mercury and methyl-mercury distribution in rice (Oryza sativa L.). Environmental Pollution, 2017, 223:11-18. DOI:10.1016/j.envpol.2016.11.042
[86] Yin R*., Zhang W., Sun G., Feng Z., Hurley J., Feng X.B., Shang L*., Mercury Risk in Poultry in the Wanshan Mercury Mine, China. Environmental Pollution, 2017, 230:810-816. DOI:10.1016/j.envpol.2017.07.027
[87] Yin R. S*., Xu L.G., Lehmann B., Lepak R. F., Hurley J. P., Mao J. W., Feng X.B., Hu R.Z. Anomalous mercury enrichment in Early Cambrian black shales of South China: Mercury isotopes indicate a seawater source. Chemical Geology, 2017, 467: 159-167. DOI:10.1016/j.chemgeo.2017.08.010.
[88] Zhang L., Lyman S., Mao H., Lin C-J., Gay D.A., Wang S., Gustin M.S. Feng X.B., Wania F., A synthesis of research needs for improving the understanding of atmospheric mercury cycling. Atmos. Chem. Phys., 17, 9133–9144, 2017, https://doi.org/10.5194/acp-17-9133-2017
[89] Zhao L., Guo Y.N., Meng B*., Yao H., Feng X.B*. Effects of damming on the distribution and methylation of mercury in Wujiang River, Southwest China. Chemosphere, 2017, 185:780-788. DOI:10.1016/j.chemosphere.2017.07.077
[90] Zhou X., Zhou S.Q*, Feng X., Optimization of the photoelectrocatalytic oxidation of landfill leachate using copper and nitrate co-doped TiO2 (Ti) by response surface methodology. PLoS ONE 2017, 12(7): e0171234. https://doi.org/10.1371/journal.pone.0171234
[91] Yin R.S., Gu C.H., Feng X.B*., Zheng LR., Hu N.N., Transportation and Transformation of Mercury in a Calcine Profile in the Wanshan Mercury Mine, SW China. Environmental Pollution, 2016, 219: 976-981. doi:10.1016/j.envpol.2016.10.034
[92] Du B., Li P*., Feng X*., Qiu G., Zhou J., Maurice L. Mercury exposure in children of the Wanshan mercury mining area, Guizhou, China. International Journal of Environmental Research and Public Health. 2016, 13, 1107; doi:10.3390/ijerph13111107
[93] Zhang H., Fu X*., Lin C-J., Shang L., Zhang Y., Feng X*., Lin C., Monsoon-facilitated characteristics and transport of atmospheric mercury at a high-altitude background site in southwestern China. Atmospheric Chemistry and Physics, 2016, 16, 13131-13148. doi:10.5194/acp-16-13131-2016
[94] Sun G.Y., Sommar J*., Feng XB*., Lin C-J., Ge MF., Wang WG., Yin RS., Fu XW., Shang LH. Mass-dependent and -independent mercury isotope fractionation during gas-phase oxidation of elemental mercury vapor by the atomic halogens Br and Cl. Environmental Science and Technology, 2016, 50 (17): 9232–9241, DOI: 10.1021/acs.est.6b01668
[95] Yu B., Fu X.*, Yin R., Zhang H., Wang X., Lin C-J., Wu C., Zhang Y., He N., Fu P., Wang Z., Shang L*., Sommar J., Sonke J.E., Maurice L., Guinot B., Feng X*., Isotopic composition of atmospheric mercury in China: New evidence for source and transformation processes in air and in vegetation. Environmental Science and Technology, 2016, 50 (17): 9262–9269. DOI: 10.1021/acs.est.6b01782
[96] Sprovieri F*., Pirrone N., Bencardino M., D'Amore F., Carbone F., Cinnirella S., Mannarino V., Landis M., Ebinghaus R., Weigelt A., Brunke E.-G., Labuschagne C., Martin L., Munthe J., W?ngberg I., Artaxo P., Morais F., Barbosa H. D. M. J., Brito J., Cairns W., Barbante C., Diéguez M. D. C., Garcia P. E., Dommergue A., Angot H., Magand O., Skov H., Horvat M., Kotnik J., Read K. A., Neves L. M., Gawlik B. M., Sena F., Mashyanov N., Obolkin V., Wip D., Feng X. B., Zhang H., Fu X., Ramachandran R., Cossa D., Knoery J., Marusczak N., Nerentorp M., Norstrom C. Atmospheric mercury concentrations observed at ground-based monitoring sites globally distributed in the framework of the GMOS network. Atmospheric Chemistry and Physics, 2016, 16: 11915–11935, doi:10.5194/acp-16-11915-2016
[97] Huang Q., Chen J.B*., Huang W., Fu P.Q., Guinot B., Feng X.B., Shang L., Wang Z.H., Wang Z., Yuan S., Cai H., Wei L., Yu B. Isotopic composition for source identification of mercury in atmospheric fine particles. Atmospheric Chemistry and Physics, 2016, 16:11773-11786, doi:10.5194/acp-16-11773-2016
[98] Fu X.W., Zhu W., Zhang H., Wang H., Sommar J., Yang X., Lin C-J. Feng X*., Depletion of atmospheric gaseous elemental mercury by plant uptake at Mt. Changbai, Northeast China. Atmospheric Chemistry and Physics, 2016, 16, 12861–12873, doi:10.5194/acp-16-12861-2016
[99] Fu X., Xu Y., Lang X., Zhu J., Zhang H., Yu B., Yan H., Lin C-J., Feng X*., Atmospheric wet and litterfall mercury deposition in typical rural and urban areas in China. Atmospheric Chemistry and Physics, 2016, 16, 11547–11562, doi:10.5194/acp-16-11547-2016
[100] Wang X., Lin C-J., Lu Z.Y., Zhang H., Zhang Y.P. Feng X*., Enhanced accumulation and storage of mercury on subtropical forest floor: Implications on mercury budget in global forest ecosystems. Journal of Geophysical Research-Biogeoscience, 2016, 121, 2096–2109, doi:10.1002/2016JG003446.
[101] Wang X., Lin C-J.*, Yuan W., Sommar J., Zhu W., Feng X*., Emission-dominated gas exchange of elemental mercury vapor over natural surfaces in China. Atmospheric Chemistry and Physics, 2016, 11125–11143. doi:10.5194/acp-16-11125-2016
[102] Wang X., Bao Z.D., Lin C-J*., Yuan W., Feng X*., Assessment of global mercury deposition through litterfall. Environmental Science and Technology, 2016, 50(16): 8548–8557, DOI: 10.1021/acs.est.5b06351
[103] Li P., Li YF., Feng X.B.,* Mercury and selenium interactions in human blood in the Wanshan mercury mining area, China. Science of the Total Environment, 2016, 573: 376-381. DOI: 10.1016/j.scitotenv.2016.08.098
[104] Liang P., Feng X.B*., You Q.Z., Zhang J., Cao Y.C., Leung A.O.W., Wu S.C*., Mercury speciation, distribution, and bioaccumulation in a river catchment impacted by compact fluorescent lamp manufactures. Environmental Science and Pollution Research, 2016, 23:10903-10910. DOI: 10.1007/s11356-016-6229-9
[105] Tang S.L*., Wang L.N., Feng X.B., Feng Z.H., Li R.Y., Fan H.P., Li K., Actual mercury speciation and mercury discharges from coal-fired power plants in Inner Mongolia, Northern China. Fuel, 2016, 180:194-204. DOI: 10.1016/j.fuel.2016.04.037
[106] Zhao L., Qiu G., Anderson C. W. N., Meng B*., Wang D.Y., Shang L., Yan H., Feng X., Mercury methylation in rice paddies and its possible controlling factors in the Hg mining area, Guizhou Province, Southwest China. Environmental Pollution 2016, 215:1-9, 10.1016/j.envpol.2016.05.001
[107] Zhao L., Anderson C. W. N.,Qiu G.L., Meng B*. Wang D.Y., Feng X*., Mercury Methylation in paddy soil: Source and distribution of mercury species at a Hg mining area, Guizhou Province, China. Biogeosciences, 2016, 13, 2429–2440, doi:10.5194/bg-13-2429-2016
[108] Zhu W., Lin J*., Wang X., Sommar J., Fu X.W., Feng X.B*., Global observations and modeling of atmosphere-surface exchange of elemental mercury: a critical review. Atmospheric Chemistry and Physics, 2016, 16, 4451–4480, doi:10.5194/acp-16-4451-2016
[109] Sommar J*., Zhu W., Shang L., Lin J., Feng X*., Seasonal variations in metallic mercury (Hg0) vapor exchange over biannual wheat - corn rotation cropland in the North China Plain. Biogeosciences, 2016, 13, 2029–2049, doi:10.5194/bg-13-2029-2016.
[110] Yin R., Feng X., Zhang J., Pan K., Wang W-X., Li X-D*., Using mercury isotopes to understand the bioaccumulation of Hg in the subtropical Pearl River Estuary, South China. Chemosphere, 2016, 147: 173-179. http://dx.doi.org/10.1016/j.chemosphere.2015.12.100
[111] Lin Y, Yang Y., Li YX., Yang L., Hou XD., Feng XB., Zheng CB*. Ultrasensitive Speciation Analysis of Mercury in Rice by Headspace Solid Phase Microextraction Using Porous Carbons and Gas Chromatography-Dielectric Barrier Discharge Optical Emission Spectrometry. Environmental Science and Technology, 2016, 50(5): 2468-2476. DOI:10.1021/acs.est.5b04328
[112] Yin R., Feng X*., Hurley J. P., Krabbenhoft D.P., Lepak R.F., Kang S., Yang H., Li X., Rising temperature accelerates aqueous mercury photo-reduction in Tibetan Plateau lakes. Scientific Reports, 2016, 6:23332. DOI: 10.1038/srep23332
[113] Chen JB*., Hintelmann H., Zheng W., Feng XB., Cai HM., Wang ZH., Yuan SL., Wang ZW., Isotopic evidence for distinct sources of mercury in lake waters and sediments. Chemical Geology, 2016, 426:33-44. DOI: 10.1016/j.chemgeo.2016.01.30
[114] Yin R., Gu C.H., Feng X*., Hurley J. P., Krabbenhoft D.P., Lepak R.F., Zhu W., Zheng L.R., Hu T.D., Distribution and Geochemical Speciation of Soil Mercury in Wanshan Hg Mine: Effects of Cultivations. Geoderma, 2016, 272:32-38, http://dx.doi.org/10.1016/j.geoderma.2016.03.003
[115] Zhou X., Zhang XN., Feng X.B., Zhou J., Zhou SQ*., Preparation of a La/N co-doped TiO2 film electrode with visible light response and if photoelectrocatalytical activity on a Ni substrate. Dyes and Pigments, 2016, 125:375-383.
[116] Meng B., Feng X*., Qiu G., Li Z., Yao H., Shang L., Yan H. The impacts of organic matter on the distribution and methylation of mercury in a hydroelectric reservoir in Wujiang River, Southwest China. Environmental Toxicology and Chemistry, 2016, 35(1):191–199. DOI: 10.1002/etc.3181
[117] Yin R., Feng X*., Hurley J. P., Krabbenhoft D.P., Lepak R.F., Hu R.Z., Zhang Q., Li Z., Bi X., Mercury isotopes as proxies to identify sources and environmental impacts of mercury in sphalerites. Scientific Reports, 2016,6, 18686, DOI: 10.1038/srep18686
[118] Kim K-H*, Hong Y-J, Szulejko J E., Kang C-H., Chambers S., Feng X., Deep A., KimY-H. Airborne iron across major urban centers in South Korea between 1991and 2012. Science of the Total Environment. 2016, 550:309-320. http://dx.doi.org/10.1016/j.scitotenv.2015.11.109
[119] Ahmed E., Kim K-H*., Kim J-O., Park J.-K., Chambers S. D., Feng X. Sohn J-R., Jeon E-C., Pollution of airborne metallic species in Seoul, Korea from 1998 to 2010. Atmospheric Environment, 2016, 124: 85-94. http://dx.doi.org/10.1016/j.atmosenv.2015.11.001
[120] Kim K-H*., Sul K-H., Szulejko J.E., Chambers S. D., Feng X., Lee M-H., Progress in the reduction of carbon monoxide levels in major areas in Korea. Environmental Pollution, 2015, 207: 420-428, http://dx.doi.org/10.1016/j.envpol.2015.09.008
[121] Wang Z.H., Chen J.B.*, Feng X., Hintelmann H., Yuan S.L., Cai H.M., Huang Q., Wang S.X., Wang F.Y., Mass-dependent and mass-independent fractionation of mercury isotopes in precipitation from Guiyang, SW China. Comptes Rendus Geosciences, 2015, 237(7-8): 358-367. DOI:10.1016/j.crte.2015.02.006.
[122] Wang X., Zhang H., Lin J*., Fu X.W., Zhang Y., Feng X*., Transboundary transport and deposition of Hg emission from springtime biomass burning in Indo-China Peninsula. Journal of Geophysical Research- Atmospheres. 2015, 120, 9758-9771, doi:10.1002/2015JD023525.
[123] Yu B., Wang X., Lin J., Fu X., Zhang H., Shang L., Feng X*., Characteristics and potential sources of atmospheric mercury at a subtropical near-coastal site in East China. Journal of Geophysical Research- Atmospheres. 2015, 120, 8563-8574. doi:10.1002/2015JD023425.
[124] Li P., Feng X*., Chan H.M., Zhang X.F., Du B., Human body burden and dietary methylmercury intake: the relationship in a rice consuming population. Environmental Science and Technology, 2015, 49 (16): 9682–9689, DOI: 10.1021/acs.est.5b00195
[125] Fu X., Zhang H., Wang X., Yu B., Lin J., Feng X.*, Observations of atmospheric mercury in China: A critical review. Atmospheric Chemistry and Physics, 2015, 15, 9455–9476, doi:10.5194/acp-15-9455-2015
[126] Li P., Du B., Chan H.M., Feng X*., Human inorganic mercury exposure, renal effects and possible pathways in Wanshan mercury mining area, China. Environmental Research, 2015, 140:198–204, http://dx.doi.org/10.1016/j.envres.2015.03.033
[127] Zhu W., Sommar J*., Lin C.-J., Feng X*. Mercury Vapor Air-Surface Exchange Measured by Collocated Micrometeorological and Enclosure Methods – Part II: Bias and Uncertainty Analysis. Atmospheric Chemistry and Physics, 2015, 15, 5359–5376, doi:10.5194/acp-15-5359-2015
[128] Huang Q., Liu Y.L., Chen J.B.*, Feng X., Huang W.L., Liu S., Cai H., Fu X., An improved dual-stage protocol to preconcentrate mercury from airborne particles for precise isotopic measurement. J. Anal. At. Spectrom., 2015,30, 957-966. DOI: 10.1039/c4ja00438h
[129] Zhang C., Qiu G., Anderson C. W. N., Zhang H., Meng B., Liang L., Feng X*., Effect of atmospheric mercury deposition on selenium accumulation in rice (Oryza sativa L.) at a mercury mining region in Southwestern China. Environmental Science and Technology, 2015, 49: 3540–3547, DOI: 10.1021/es505827d.
[130] Yin R., Feng X., Chen B., Zhang J., Wang W-X., Li X-D*., Identifying the Sources and processes of Mercury in Subtropical Estuarine and Ocean Sediments Using Hg Isotopic Composition. Environmental Science and Technology, 2015, 49:1347-1355.
[131] Liang P., Feng X*., Zhang C., Zhang J., Cao Y., You Q., Shen Y., Wong M-H., Wu S-C*. Human exposure to mercury in a compact fluorescent lamp manufacturing area: by food (rice and fish) consumption and occupational exposure. Environmental Pollution, 2015, 198:126-132, DOI:10.1016/j.envpol.2014.12.036.
[132] Fu X. W., Zhang H., Lin C.-J., Feng X*., Zhou L. X*., Fang S. X. Correlation slopes of GEM/CO, GEM/CO2, and GEM/CH4 and estimated mercury emissions in China, South Asia, Indochinese Peninsula, and Central Asia derived from observations in northwest and southwest China. Atmospheric Chemistry and Physics, 2015, 15, 1013-1028, DOI:10.5194/acp-15-1013-2015.
[133] Zhu W., Sommar J*., Lin C.-J., Feng X*. Mercury Vapor Air-Surface Exchange Measured by Collocated Micrometeorological and Enclosure Methods – Part I: Data Comparability and Method Characteristics. Atmospheric Chemistry and Physics, 2015, 15:685-702, doi:10.5194/acp-15-685-2015
[134] Zhang H., Fu X. W., Lin C.-J., Wang X., Feng X*. Observation and analysis of speciated atmospheric mercury in Shangri-la, Tibetan Plateau, China. Atmospheric Chemistry and Physics, 2015, 15: 653-665, doi:10.5194/acp-15-1-2015
2、近5年中文核心期刊论文
[1] 程泓,刘丙祥,冯新斌,查健锐,张学胜,高毅,典型燃煤电厂汞的分布、迁移及释放特征研究,地球与环境, 2018, 46 (1):43-49.
[2] 孟其义, 钱晓莉, 陈淼, 赵蕾, 冯新斌, 孟博,稻田生态系统汞的生物地球化学研究进展, 生态学杂志, 2018,37(5): 268-285.
[3] 朱宗强, 王训, 王衡, LIN, Che-Jen,冯新斌*,单一汞同位素示踪大气与农田作物汞的交换过程, 环境化学,2018,37(3):419-427.
[4] 孙荣国,范丽,冯新斌,臧庆大,杨国蒙,陈卓,2016年宁夏回族自治区PM2.5浓度时空分布特征,地球与环境,2018,46(4):348-354.
[5] 高兰兰,傅成城,冯新斌,李仲根,周少奇,贵州东部某燃煤电厂汞排放对周边环境空气及土壤的影响,中国环境监测,2018,34(3):51-58.
[6] 王训,袁巍,冯新斌*,森林生态系统汞的生物地球化学过程,化学进展,2017,29(9):970-980.
[7] 钟顺清,仇广乐,冯新斌*,铁硫耦合影响甲基汞在土壤-水稻系统中迁移转化的研究进展,生态学杂志,2017, 36(8): 2351-2357.
[8] Xu X., Liu N., Landis M. S., Feng X., Qiu G*. Characteristics and distributions of atmospheric mercury emitted from anthropogenic sources in Guiyang, southwestern China. Acta Geochimica,2016, 35( 3): 240-250.
[9] 梅露,王训,冯新斌*,罗辑,青藏高原贡嘎山冰川区水体Hg的空间分布及源汇特征,环境化学,2016,35(8):1549-1556.
[10] 赵慧芳,闫海鱼,王训,冯新斌*,中国南方稻田土壤汞含量及潜在危害评价,生态毒理学报,2016,11(6):252-258.
[11] 夏吉成,胡平,王建旭,张华,冯新斌*,贵州省铜仁汞矿区汞污染特征研究,生态毒理学报,2016,11(1):231-238.
[12] 唐黎,刘鸿雁,冯新斌,李仲根,傅成诚,王浩,陈吉,王盛,一座高灰无烟煤电厂的大气汞排放特征,生态毒理学报,2016,35(5):1351-1357.
[13] 张鹏,张华,冯新斌*,闫海鱼,汞的树木年轮化学研究进展,地球与环境,2016,44(1):124-129.
[14] 冯新斌*,尹润生,俞奔,杜布云,陈玖斌,汞同位素地球化学概述,地学前缘,2015,22(5) :124-135
[15] 燕敏,郭建阳,冯新斌,张超,仇广乐,硒对土壤中汞形态及其生物有效性的影响,生态学杂志,2015,34(5) :1402-1406.
[16] 袁圣柳,陈玖斌,蔡虹明,王中伟,王柱红,黄强,康世昌,冯新斌,青藏高原降水中汞同位素质量分馏及非质量分馏研究,地质学报,2015,89:122-123.
[17] 潘鲁生,冯新斌*,刘秀伟,贵州东风水库沉积物间隙水中溶解态汞及甲基汞的分布特征及界面交换,地球与环境,2015,43(5):483-489.
[18] 冯新斌*,王训,林哲仁,付学吾,亚热带与温带森林小流域生态系统汞的生物地球化学循环及其同位素分馏,环境化学,2015,34(2):203-211.
[19] 付学吾*,冯新斌,贵阳市2001/2002和2009/2010两个年度大气气态总汞变化特征及其对区域大气汞排放强度的指示意义,矿物岩石地球化学通报,2015,34(2):242-249.
3、专著
[1] 张爱华,冯新斌主编,环境汞砷污染与健康,武汉:湖北科学技术出版社,1-260页,2019.12
[2] 冯新斌等著,乌江流域水库汞的生物地球化学过程及环境效应,北京:科学出版社,1-378页,2015.01
[3] Feng X.et al. Biogeochemical Cycle of Mercury in Reservoir Systems in Wujiang River Basin, Southwest China, Science Press and Springer Nature Singapore Pte Ltd. PP:1-416, 2018, https://doi.org/10.1007/978-981-10-6719-8_1