Jonas Olof Sommer
文章来源:本站原创    发布时间:2018-07-19      【字号:


姓名:Jonas Olof Sommer
性别:男
学历:博士
职称:研究员
地址:贵州省贵阳市观山湖区林城西路99号;550081
E-mail:jonas@vip.skleg.cn


简 历:
 08/1988 - 05/1994 硕士 瑞典哥德堡查默斯理工大学 化学工程专业
 08/1994 - 05/2001 博士 瑞典格特伯格大学 化学专业
 06/2003 - 06/2004 博士后 美国加州理工大学亚瑟阿摩司诺伊斯化学物理实验室,
 12/2005 - 05/2006 博士后 德国不莱梅港艾尔弗雷德韦格纳极地与海洋研究所,
 02/2008 - 07/2010 博士后 中国科学院地球化学研究所
 08/2010 - 12/2014 副研究员 中国科学院地球化学研究所
 01/2016 - 研究员 中国科学院地球化学研究所

研究方向:
 重金属污染,环境中有害金属的分析(包括天然稳定同位素),大气-界面(特别生物圈)汞交换过程(通量),微气象学,化学动力系,环境风险评估,重金属的生物累计效应

承担科研项目情况:
1、自然界中偶数汞同位素非质量分馏的来源和机理研究(面上项目,项目编号:41773146,负责人,2018.01-2021.12,经费:69万);
2、长白山和哀牢山偏远山地森林系统与大气间汞的交换通量研究(面上项目,项目编号:41473121,负责人,2015.01-2018.12,经费:95万);
3、单质汞被卤素原子(Cl,Br)在气相氧化过程产生的汞同位素分馏:大气汞循环研究的新方法(面上项目,项目编号:41273144,负责人,2013.01-2016.12,经费:80万);
4、地气间汞交换、汞甲基化、食物链富集及污染环境修复-中国与瑞典典型生态环境的对比研究(中国科学院国际合作局对外合作重点项目,项目编号:132852KYSB20130003,参与人,2014.01- 2016.12,经费:80万)
5、亚热带与温带森林小流域生态系统汞的生物地球化学循环及同位素分馏(国家自然科学基金重点项目,批准号:41430754,参与人,2015.01-2019.12,经费:360万)
6、我国汞污染特征、环境过程及减排技术原理(国家科技部973项目,批准号:2013CB430000,参与人,2013.01-2017.08,经费:3800万元)

获奖及荣誉:
 2002瑞典国际研究与高等教育合作基金会博士后奖学金
 2005 瑞典-德国研究交流奖学金
 2009中国科学院青年国际科学家奖金

代表论著: 
1. Sommar, J., et al., Measurements of fractionated gaseous mercury concentrations over northwestern and central Europe, 1995-99. Journal of Environmental Monitoring, 1999. 1(5): p. 435-439. 
2. Sommar, J., X. Feng, and O. Lindqvist, Speciation of volatile mercury species present in digester and deposit gases. Applied organometallic chemistry, 1999. 13(6): p. 441-445. 
3. Sommar, J., et al., Field Approaches to Measure Hg Exchange Between Natural Surfaces and the Atmosphere A Review. Critical Reviews in Environmental Science and Technology, 2013. 43(15): p. 1657-1739. 
4. Sommar, J., et al., A whole-air relaxed eddy accumulation measurement system for sampling vertical vapour exchange of elemental mercury. Tellus Series B-Chemical and Physical Meteorology, 2013. 65. 
5. Sommar, J., et al., Seasonal variations in metallic mercury (Hg-0) vapor exchange over biannual wheat-corn rotation cropland in the North China Plain. Biogeosciences, 2016. 13(7): p. 2029-2049. 
6. Sommar, J., et al., A whole-air relaxed eddy accumulation measurement system for sampling vertical vapour exchange of elemental mercury. Tellus Series B-Chemical and Physical Meteorology, 2013. 65: p. 21. 
7. Sommar, J.O. and M.E. Andersson, Signal and distribution of volatile Mercury (Hg0) in the Marine High Arctic During Polar Summer in the Sequel of Enhanced Atmospheric Deposition of Hg. 矿物岩石地球化学通报, 2008. 27(z1). 
8. Andersson, M., et al., Enhanced concentrations of dissolved gaseous mercury in the surface waters of the Arctic Ocean. Marine Chemistry, 2008. 110(3): p. 190-194. 
9. Andersson, M., et al., Accumulation of mercury in the Arctic Ocean. Marine Chemistry, 2008. 110: p. 190-194. 
10. Deev, A., J. Sommar, and M. Okumura, Cavity ringdown spectrum of the forbidden (A) over-tilde (2) E ('')(X) over-tilde (2) A (2)(') transition of NO3: Evidence for static Jahn-Teller distortion in the (A) over-tilde state. Journal of Chemical Physics, 2005. 122(22): p. Art. No. 224305. 
11. Feng, X., et al., Earth surface natural mercury emission: Research progress and perspective. Chinese Journal of Ecology, 2011. 30(5): p. 845-856. 
12. Feng, X., et al., Modified on-line monitoring of total gaseous mercury in flue gases using Semtech? Hg 2000 analyzer. Fresenius' journal of analytical chemistry, 2000. 368(5): p. 528-533. 
13. Feng, X., et al., Improved determination of gaseous divalent mercury in ambient air using KCl coated denuders. Fresenius' journal of analytical chemistry, 2000. 366(5): p. 423-428.  
14. Feng, X., et al., Exchange flux of total gaseous mercury between air and natural water surfaces in summer season. Science in China Series D: Earth Sciences, 2002. 45(3): p. 211-220. 
15. Fu, X., et al., A review of studies on atmospheric mercury in China. Science of the Total Environment, 2012. 421- 422: p. 73-81. 
16. He, J., et al., Mercury pollution in a mining area of Guizhou, China: Fluxes over contaminated surfaces and concentrations in air, biological and geological samples. Toxicological & Environmental Chemistry, 1998. 67(1-2): p. 225-236. 
17. Li, J., et al., Short-time variation of mercury speciation in the urban of G?teborg during G?TE-2005. Atmospheric Environment, 2008. 42(36): p. 8382-8388. 
18. Lin, C.-J., et al., Novel Dynamic Flux Chamber for Measuring Air-Surface Exchange of Hgo from Soils. Environmental Science & Technology, 2012. 46(16): p. 8910-8920. 
19. Meng, B., et al., Distribution Patterns of Inorganic Mercury and Methylmercury in Tissues of Rice (Oryza sativa L.) Plants and Possible Bioaccumulation Pathways. Journal of Agricultural and Food Chemistry, 2010. 58(8): p. 4951-4958. 
20. Okumura, M., et al., New insights into the Jahn–Teller effect in NO3 via the dark ? 2E''state. Physica Scripta, 2006. 73(1): p. C64. 
21. Osterwalder, S., et al., A dual-inlet, single detector relaxed eddy accumulation system for long-term measurement of mercury flux. Atmospheric Measurement Techniques, 2016. 9(2): p. 509-524. 
22. Osterwalder, S., et al., Comparative study of elemental mercury flux measurement techniques over a Fennoscandian boreal peatland. Atmospheric Environment, 2018. 172: p. 16-25. 
23. Sun, G., et al., Mass-Dependent and -Independent Fractionation of Mercury Isotope during Gas-Phase Oxidation of Elemental Mercury Vapor by Atomic Cl and Br. Environmental Science & Technology, 2016. 50(17): p. 9232-9241. 
24. Wang, X., et al., Emission-dominated gas exchange of elemental mercury vapor over natural surfaces in China. Atmospheric Chemistry and Physics, 2016. 16(17): p. 11125-11143. 
25. Wang, X., et al., Using Mercury Isotopes To Understand Mercury Accumulation in the Montane Forest Floor of the Eastern Tibetan Plateau. Environmental Science & Technology, 2017. 51(2): p. 801-809. 
26. Yu, B., et al., Isotopic Composition of Atmospheric Mercury in China: New Evidence for Sources and Transformation Processes in Air and in Vegetation. Environmental Science & Technology, 2016. 50(17): p. 9262-9269. 
27. Zhang, H., et al., Atmospheric mercury inputs in montane soils increase with elevation: evidence from mercury isotope signatures. Scientific reports, 2013. 3. 
28. Zhu, W., et al., Global observations and modeling of atmosphere-surface exchange of elemental mercury: a critical review. Atmospheric Chemistry and Physics, 2016. 16(7): p. 4451-4480. 
29. Zhu, W., et al., Highly elevated emission of mercury vapor due to the spontaneous combustion of refuse in a landfill. Atmospheric Environment, 2013. 79: p. 540-545.